
010261-5-T

(NASA- CR-136500) A STRUCTURALLY ORIENTED N74-13886

SIMULATION SYSTEM (Michigan Univ ) 51 p
HC $4 75 CSCL 09B

Unclas
G3/08 15625

A Structurally Oriented
Simulation System

Z. ARAN

under the direction of
Professor J. F. Meyer

.Q July 1973

Prepared under
Reproduced by

NATIONAL TECHNICAL ASA Grant NGR23-005-463
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SYSTEMS ENGINEERING LABORATORY
THE UNIVERSITY OF MICHIGAN, ANN ARBOR



THE UNIVERSITY OF MICHIGAN

SYSTEMS ENGINEERING LABORATORY

Department of Electrical and Computer Engineering
College of Engineering

SEL Technical Report No. 70

A STRUCTURALLY ORIENTED SIMULATION SYSTEM

by

Zvi Aran

Under the direction of
Professor John F. Meyer

Programmers: J. G. Bravatto
W. E. Bully

July 1973

Prepared under

NASA Grant
NGR23-005-463

/;



CONTENTS

Page
1. General Description 1

1.1. Introduction 1

1.2. Description 2

1.3. Modes of Operation 8

2. The Command Language of the Basic System 12

2.1. COMMAND Mode 12

2.2. CREATE Mode 13

2.3. SIMULATE Mode 22

2.4. ALTER Mode 25

3. Future Features to be Incorporated in SOSS 28

3.1. COMMAND Mode 28

3.2. CREATE Mode 29

4. An Example 31

5. SOSS as a Computer Program 36

5.1. How SOSS is Stored 36

5.2. How SOSS Operates 41

5.3. The Algorithms Used in SOSS 45

5. 4. Comments on Statistics and Efficiency 48

6. Conclusion 48

i/



A Structurally Oriented Simulation System

1. General Description

1. 1. Introduction

A Structurally Oriented Simulation System (SOSS) is a computer

program, designed to be used as an experimental aid in the study of

reliable systems. Basically, SOSS can simulate the structure and

behavior of a discrete-time, finite-state, time-invariant system at

various levels of structural definition. SOSS enables the user to simulate

systems incorporating many input and state variables which cannot,

generally, be solved with a pencil and pad. This is especially true

when one is interested in the effects of local structural faults on the

overall behavior of a large system.

The structure of a simulated system is specified as a network

of sequential machines. Further, local changes in structure can be

specified, which correspond to faults in the original system. This

ability to "insert" faults through simulation and observe their effects

on the behavior or the original system is one of the distinguishing

features of SOSS in its application to the study of reliable systems.

Another feature is that SOSS is not confined to the simulation of logic

systems with a binary alphabet. The object of SOSS is to obtain ex-

perimental results pertaining to properties of reliable system such

as fault tolerance, diagnosability and reconfigurability. Such re-

1



2

sults can lend insight to both the theory and design of reliable systems.

SOSS has been designed to run on-line on the Michigan Terminal

System, (MTS), i. e., in a conversational mode via a terminal, but it

can be easily modified to run on other IBM 360/370 facilities with

terminal input.

1. 2. Description

A general description of the systems that can be simulated by

SOSS is given in Figure 1. The simulator is table driven (see section

5) and is, therefore, circuit and device independent. The combinational

network is a finite acyclic network (no feedback loops are allowed).

Each network node realizes a general combinational function of n

variables ( n 1> ), that is, a function from an n-fold cartesian product

of finite sets into a finite set. Such functions can be simple one or

two variable switching functions or very complicated ones having as

many as 255 variables, each of which can assume up to 255 values.

SOSS dynamically allocates memory according to the core size required

by the simulated system (limited only by the storage capability of the

host computer). In order to simplify the use of SOSS and make it more

intuitive each function is identified with, and is referred to by the name

of the node representing it. The component machines MI, M2 ,... M

are state machines, i.e., sequential machines having an output function

equal to the identity function. These state machines provide the memory

for the simulated system, and are referred to as machine nodes.



3

State Machines

Delay

Current *
00

State

Combinational
Network

System * *System
Inputs * * Outputs

Figure 1.



4

The simplest function a machine component can represent is a pure

delay, or it can become as complicated as a combinational network

function. In addition, each machine component may contain a feedback

loop. The inputs to the combinational network are the system inputs

and the "current state" of the system provided by the state machines.

The system outputs are the outputs of any node the user chooses to

monitor including the input and machine nodes.

As an example we will use an S-R flip-flop whose function table

is given in Figure 2. a. In this table S and R are the control inputs,

Qt is the current state and Qt+1 is the next state of the flip-flop. A

realization of the S-R flip-flop using AND, OR, NOT gates, and machine

component QI is given in Figure 2. b. In this example, Al, 01 and N1

are the nodes of the combinational network. The function realized by

node A1, for example, is the switching function AND. This function

is assigned to node Al while specifying the system for simulation.

The transfer function 6 associated with Q1 is used to detect the condi-

tion R = S = 1 for which the output of the S-R flip-flop is undefined.

When R- S = 0 the output of the OR gate 01 is passed to the delay.

The inputs are Xl(=S), X2(=R), and Q1 (as noted before the ambiguity

in Q1 being both the function and the node is intentional).



5

The Function Table:

Qt S R Qt+

0 0 0 0
S0 1 0

St+ v R.~t 0 1 0 1
0 1 1 undefined
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 undefined

Figure 2. a.

A I01
X1(=S) I - DELA Q1

combinational network machine component

Figure 2. b.

The output set of each function may contain up to 255 distinct values.

These values are represented by the integers 0 thru 254, associated

with the output line of each node. The integer 255 is reserved for

unspecified function values when an incompletely specified function

table is assigned to some function. The cardinality of the output set



6

associated with each node is referred to as the alphabet size (AS) of

the node. In our example, Q1 has three values associated with it,

(0, 1, u), hence its AS is equal to three, represented by (0, 1, 2). A1,

O1, and N1 represent binary functions (0, 1) and have an AS equal to two

each. Note that Q1 can assume one of three values (0, 1, 2) while the

input alphabet set of A1, which represents the binary function AND,

contains only the values (0, 1). SOSS will execute the simulation as

long as the input to Al assumes a legal binary value but will terminate

the execution and issue an error statement if the value 2 is passed to

Al as an input.

SOSS stores the function of each node in a canonical function table.

The order of the tables is the natural order defined by the order in which

the input connections to each node are entered during the system speci-

fication. In the case of machine nodes the first variable in the table

is the output of the machine (the feedback loop) if a function other than

a delay is specified. In order to save storage, only the "value" column

of each function table is stored. The number of entries in each function

table is equal to the product of the AS's of all the input variables to

a particular node, that is, it is the cardinality of the cross product

of the alphabet sets of all the variables of that particular function,

The command language of SOSS has been designed to enable the

user to employ a simple yet powerful set of commands in order to specify

the structure of a system, alter structure (insert faults), and simulate

the behavior of the original and altered systems.



7

Since structure is specified as a network of sequential machines, the

user may describe a system at a variety of levels of structural refine-

ment. He may choose to describe the detailed structure of a combina-

tional or sequential switching network, he may describe a system as

a composition of several subsystems, or he may describe only the

state -transition and output functions of a system by regarding it as

a single component network. The network given in Figure 2. b., for

example, can be alternatively specified in SOSS as the function F1

in Figure 2. c which realizes the function table given in Figure 2. a.

Still another specification, stressing the versatility of the machine nodes,

is given in Figure 2. d which containes only the machine component Q1.

X1(=S) F I

X2(=R) j
Q1

L_ combinational network _ machine comp.

Figure 2. c.



8

X1(=S)y

6 DELAY 1

X2(=R) I

I

L Q1

Figure 2. d.

As for fault insertion, any permanent fault, beginning with simple
"stuck at" faults through functional changes in combinational and machine

components may be simulated via alterations in the original structure.

1. 3. Modes of Operation

SOSS has three basic modes of operation. These are CREATE,

SIMULATE and ALTER. A fourth mode is the COMMAND mode which

enables the user to transfer from one mode into another. Entering

data to SOSS is done in free format statements (see section 2). In

these statements the letters A through O, R through V, and Y and Z

are assigned to combinational network components. The letters P and

Q are reserved for the component machines. The letters W and X

are reserved for system inputs. The letters serve as node names.

Each letter is followed by a number in the range 0-255. . The number of

possible system inputs is 512. This is also the number of possible



9

machine nodes. The number of possible nodes in the combinational

network is 5632. The following describes the basic modes of operation.

a) CREATE mode.

In this mode the user creates the system to be simulated.

SOSS is initialized upon entry to CREATE and is ready to accept

a new system. There are three types of information that the

user need supply to SOSS. The first is the alphabet size (AS)

of the different components, inputs, and component machines.

The user then provides the functions of the combinational

network components and the transition functions

of the state machines. The user must also supply the inter-

connections list for the whole system. Specifying the AS actu-

ally creates the node and must be done prior to assigning a

function to a node or specifying its interconnections. SOSS

assembles the data provided into a complete system. While

data is entered, SOSS monitors the created system and issues

warnings if specification errors are detected. Such error

could occur in specifying functions, improper connections,

feedback loops in the combinational network, repetitions of

information, etc.

The system can be displayed by a display feature whenever

the user wishes to inspect it while in CREATE, SIMULATE,

or ALTER.



10

b) SIMULATE mode.

This is the mode in which the system that was created by the

user is simulated. When a SIMULATE command is issued,

SOSS first enteres into a test phase. In this phase it checks

the created system for unspecified connections or functions,

and warnings are issued if any such failure is found. Upon

completion of the test phase, SOSS transfers into the SIMULATE

mode and proceeds to simulate the system.

Simulation is done sequentially. First, the "current state"

of the system is initialized either to an initial state given by

the user or to the "next state" that resulted from the last

simulation. SOSS simulates the system one clock period at

a time (see section 5 for a detailed description). The user may

specify an input string of any length (for each input variable)

or a single symbol at a time. If, during simulation, an error

in referencing the function tables is detected (e. g., a

reference exceeding the table size or to an unspecified entry)

simulation stops.

The output information of a simulation can be obtained by employ -

ing the display provision. All information concerning a simu-

lation can be printed out, i.e., current state, inputs,and values

of the nodes of the combinational network. Printout can be done

for each clock period or following a given number of clock

periods.



c) ALTER mode.

The ability to change a given system and insert faults is one

of the most important features of SOSS. This is done in the

ALTER mode. This mode is actually a subset of the CREATE

mode in that an identical syntax is used. The difference is

that the system is not initialized upon entry into the ALTER

mode, but changes are made in the structure of the original

system. To alter an existing system the user merely restates

the required information which is to be changed.

The user may store his original system in an MTS file and make

alterations on an identical copy. Both can then be run, separately,

with the same input strings. In particular, in the intended application

where alterations are interpreted as faults, the behavior of the faulty

(altered) system can thus be compared with that of the original (fault-

free) system.



12

2. The Command Language of the Basic System

SOSS has been designed to be versatile and as easy to operate as

possible. Currently, however, only an essential subset of its designed

features has been incorporated. The currently implemented version

will be described in this section. The additional features, to be imple-

mented in the future, are described in Section 3.

The following is a description of the command language of SOSS.

In each command statement only the first three characters are signifi-

cant. After each statement SOSS prompts the user with a special pre-

fix character assigned to each mode of operation.

2. 1. Command Mode

This is the control mode from which the user may transfer into

any of the other modes. The prefix for the command mode is the "greater

than" symbol (>). The statements in the command mode are listed

below.

2. 1. 1. CREATE transfers the user into the CREATE mode.

2.1.2. SIMULATE transfers the user into the SIMULATE mode.

2.1.3. ALTER transfers the user into the ALTER mode.

2. 1.4. MTS transfers the user back to the Michigan
Terminal System. SOSS can be resumed
where stopped by issuing $RESTART.

2. 1. 5. STOP transfers the user back to MTS. SOSS
execution is terminated.

2.1.6. HELP lists the available commands.



13

2.2 CREATE Mode.

The CREATE mode is used for the specification of the system to

be created. This mode is prefixed by a question mark (?). Upon

entering this mode SOSS is initialized and any existing system is des-

troyed. The commands in this mode are given by specifying the alpha-

bet size (AS), the connections, and the functions of all the nodes and

inputs of the system. The AS of a node must be specified before any

other reference to that node is made. The S-R flip-flop of Figure

2. b with its function table (Figure 2. a) will be used as an example.

2.2. 1. Specifying the alphabet size (AS) is done by using the "at" sign

(@). For the S-R flip-flop:

Al @2

N1 @2

01 @2

Xl @2

X2 @2

Ql @3

To make writing easier the left hand side of an AS specification state-

ment can be given as a list of nodes with the same AS, using commas

to separate the node names. For example, the above specification

could be entered as

A1, N1, 01, X1, X2 @2

Ql @3



14

If the user wishes to create, say, ten nodes with the same AS he can

use ellipses, e. g.,

Al.. .A10 @5

This statement will create ten nodes, Al through A10, each with

an AS equal to 5.

The alphabetic order within a statement is not important. The

following statement, for example, will create twenty nodes, KO

through K8, C1 through C6 and Z13 through Z17, all with an AS of

3.

KO...K8,C1...C6, Z13... Z17 @3

The letters A-O, R-V, and Y and Z are reserved for conbinational net-

work nodes. The letters, P and Q are reserved for machine nodes and

the letters W and X are reserved for system inputs. The integer

following each letter can assume any value in the range 0-255.

Inputs, machine nodes and combinational network nodes can be en-

tered in the same list regardless of order, e.g.,

Q5...Q12,X1,X2,B3... B5 @2

2.2.2. Specification of connections between nodes is done by using

the greater than symbol (>). In the case of the S-R flip-flop:

A1, X1 > 01

Q1, N1 > Al

01, X1,X2 > Q1

X2 > Nl



15

On the left hand side of each statement are the nodes whose outputs

serve as inputs to the node(s) on the right hand side. For the purpose

of specifying the connections, the left hand side of each statement

must include the list of all the nodes which serve as input to the node

on the right hand side of the statement.

If some set of inputs feeds more than a single node, the user

may specify that fact as follows:

X1,P3,B5...B10 > Z2,Q1...Q6,T5

The order within each list is not important. (However, the order in

which the inputs to a node are specified determines the canonical

order of its function table). Each node must have at least one input

connected to it, whether a system input or the output of some other

node.

2.2.3. Specification of the function of a node is done by using the equal

sign (=). Two types of functions currently exist in SOSS. One type

is that of a SOSS predefined function. These are the logic functions

for two variables AND, OR, NOT, and EXCLUSIVE-OR which can

be specified for both combinational network and machine nodes. For

machine nodes pure delay may be specified by using the predefined

DELAY function.

The second type of function specification consists of a list of

values. These values are ordered according to the "value" column

of the function table. The function table must be ordered canonically,

according to the order in which the connections to a particular node



16

were specified. The function values are represented by integers in the

range 0-254. The integer 255 is reserved for incompletely specified

tables. An incompletely specified table is legal in SOSS as long as an un-

specified entry is not referenced. It is the responsibility of the user

to ascertain that such unspecified entries are not referenced. The length

of a completely specified table is the same as the product of the AS's

of all the inputs to that particular node.

Returning to the S-R flip-flop:

A1 = AND

N1 = NOT

01 = OR

Alternately we could specify 01, for example, as follows:

01= 0, 1,1, 1

where its table would look as follows:

Al Xl 01

0 0 0

0 1 1

1 0 1

1 1 1

The function for node Al would be specified as

Al = 0, 0, 0, 1

Examining the connections to Al we see that its inputs are Q1 and N1.

Since the AS of Q1 is 3 and that of N1 is 2, the table length of Al

should be 6, and the table should look as follows:



17

Q1 N1 Al

0 0 0

0 1 0

1 0 0

1 1 1

2 0 undefined

2 1 undefined

The reader may note that the first four entries in the table are those

of a logical AND. As long as the output of Q1 is a legal binary symbol

(0, 1) SOSS will simulate the behavior of the S-R flip-flop. If the

output of Q1 becomes 2 simulation will terminate. The user could

alternately declare the AS of Al to be three and the function value in the

two last entries to be the integer 2, representing the undefined value.

The same could be done for 01.

As for Q1, since the connections of Q1 were specified in the order

01, Xl, X2 the function table for Q1 should propagate the output of 01

to the delay element whenever R- S = 0, and look as follows:

01 X1(=S) X2(=R) Qlt+1

0 0 0 0

0 0 1 0
0 1 0 0

0 1 1 undefined

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 undefined



18

This table has eight entries and should be specified as

Q1 = 0, 0, 0, 2, 1, 1, 1,2

The reader should recall that in the case of machine nodes, the

first (leftmost) column of the table is implicitly the output of that

particular machine (i. e., the feedback loop). Since the AS of Q1

is three, its table contains 24 entries and looks as follows:

Q1 01 X1(=S) X2(=R) Qlt+1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 2

0 1 0 0 1

2 1 1 0 1

2 1 1 1 2

The specification of Q1 should, therefore, be given by the statement

Q1= 0,0,0,2 1 112 0,0,0,2,1,1,1, ,0,0,0,2,1,1,1,

8 8 8

which is exactly the earlier specification repeated three times.

This happens because the feedback loop is automatically assumed if

Q1 is not defined to be a pure delay. In this case the feedback is not

needed at all. The best way to specify this system, then, is to pull

the function of Q1 out of the component machine, and consider it as

part of the combinational network. The revised network is given

in Figure 3. a.



19

All

X I(= S)

L combinatinaknetwork machine com.

Figure 3. a.

The above example has deliberately been made elaborate in order to

present some insight to the specification of a system in SOSS. To

summarize the creation of a system in SOSS, the printout of the

specification of the S-R flip flop, as implemented in Figure 3. a., is

"II I[ I V I'

given in Figure 3. b.

Figure 3.Fb.: CREATE phase for the S-R flip flop of Figure 3.a.

The END statement terminates the CREATE mode and returns the user

to the COMMAND mode.

Wf l "." >"

-2 -I :\l"TI [
" I -:' .

Figure 3. b.: CREATE phase for the S-R flip flop of Figure 3. a.

The END statement terminates the CREATE mode and returns the user

to the COMMAND mode.



20

Because of the algorithms used in the simulation and feedback loop

checking, processor time will be saved (for large systems) if the

connections are specified in the order of signal propagation, that is, from

the inputs, through the combinational network to the machine nodes.

2. 2.4. A display feature is incorporated in SOSS and enables the

user to monitor the simulated system. The display command may

be given at any time in each of the different modes. The command

statement is:

DISPLAY A parameter-list A node-list

where A represents one or more blanks.

SOSS will then display the parameters given in the parameter-list

for each of the nodes specified in the node-list. The nodes in the

node-list are separated by commas. The parameter-list may be any

combination, in any order (separated by commas) of the following:

AS display the alphabet size

FUNCTION display the function

INPUTS display the nodes serving as inputs to
each of the specified nodes

OUTPUTS display the nodes for which a specified
node serves as input

VALUE display the functional value assumed by
the node during the simulation of the
last clock period. When first created,
all the machine component functions
assume the value zero unless specifically
otherwise defined.



21

If for some node in the node-list the requested parameter has not yet

been defined, SOSS will declare it to be UNDEFINED. In the case of

INPUTS into the X or W nodes (system inputs) the written message

will read NONE. If the user wishes to examine all the parameters

he can issue the command

DISPLAY A ALL A node -list

This can be useful during the CREATE phase where the user can thus

verify that a node is completely specified. The user can also inspect

the size of the system he has created (in MTS pages) by issuing the

statement

DISPLAY A SIZE.

As an example, the system specified in Figure 3. b is displayed in

Figure 3. c.
?D) It" T F! I C I C1T I '1.

Nfla IPINT~n

A. I: 1,V1

.... ,: - 1 1 ~ l , I ' 7
??nS IUTPUTS 9 9"

21 I NOTRPRODCIBLfr the 0i flpo igr .

Th IVrP I s

91 I:tIVIY

%I r) T I -T 0 1-- I ' ',I

"1l n C It ir),%TP "r A p jr 0!

.- " . :.. .. I. I T: !

1 NOT REPRODUCIL

Figure 3. c. DISPLAY-ing the created system for
for the flip flop of Figure 3. a.

*The OAS has been replaced by the AS specification.



22

2.3. SIMULATE Mode.

In this mode the user-created system can be simulated. To enter

this mode the statement

SIMULATE

is issued while in the COMMAND mode. Upon entry to the SIMULATE

mode, a TEST phase is automatically initiated which tests the system

for unspecified connections or functions. If no such failure exists

SOSS prints out on the terminal the following statements:

k INPUT NODES

I MACHINE NODES

m LOGIC NODES

where k, 1, and m are the numbers of the corresponding nodes specified.

This serves as a check for the user. SOSS then enters the SIMULATE

mode. The prefix for this mode is an asterisk (*). As in CREATE, the

statement END returns the user to the COMMAND mode, and the

DISPLAY command (section 2. 2.4) can be issued at any time. The follow-

ing commands are available in SIMULATE mode:

2. 3. 1 STATE A list of values for all the machine nodes.

This command allows the user to define the initial "current state" of

the system to be simulated. This is done by specifying the values for

all the machine nodes, separated by commas. Each specified value

must be a legal symbol of the alphabet set of the corresponding machine

node. For example, in a system that has three machine nodes



23

Q0, Q2, Q5, the statement

STATE 3, 1, 2

assigns the value 3 to node Q0, the value 1 to node Q2 and the value 2

to node Q5. A STATE statement may be issued prior to each simula-

tion, otherwise, the "current state" will be defined by the outputs of

the machine nodes determined at the last simulation. Initially the

"current state" defaults to zero for all the machine nodes.

2.3.2 STEP An

This statement causes a simulation of n consecutive clock periods, or

until a logical end-of-file (signifying the end of the input data) is encountered.

If the simulated system has k inputs, for example, then an input sequence

must be specified as follows (where the equal (=) sign is a prompting

character issued by SOSS):

=0, 5, 2,.. , 1

k symbols

SOSS proceeds to execute one clock period and prompts the user for

another input sequence. This is repeated for n steps. The user may

then examine the system using DISPLAY.

2.3. 3 CONTINUEAn

This command is similar to the STEP command, again SOSS executes

the simulation one step at a time (returning to the user for more input

each step) until time period n is reached. An example of a simulation

of the S-R flip-flop in Figure 3. a is given in Figure 3. d.



24

I N-I 0DS

*DI!7 VAI-"
Nt'~Val-

~1 0
*TF2 1

*DI q V/AL '<1 Y 9,'

Y1 0

xi1 0

*S T' 1

=1 . 0

:1 I

01

=0 , I
:!1.0 - Y 11

=1)I ', NOT REPODUIBL

NM r , F A

Figure 3. d. Simulation of the S -R flip flop.



25

TT Cq >", T •  ?'" S IL m "I' I .. ... \'!'T. ~7 * I ,

=0 n
I C PTD I NE F LLS ITSI T V .

*STATE 1 CgJT • STAT 1r ' C4T NC I 'T IED 1 ND
*DIS VAL QI

,n VA1_

.1
,)IS \ML Xl ','z9 "I

1l 0

NOT REPRODUCIBLE

Figure 3. d. Simulation of the S-R flip flop (continued).

2.4. ALTER Mode.

The ALTER mode is the mode which enables the user to modify

the structure of a given system and "insert" faults. Essentially it is

part of the CREATE mode. The difference is that transferring into

the ALTER mode does not destroy the existing system. In this mode

nodes, connections, and functions can be added to the current system

or altered as the user pleases.

It is the responsibility of the user to keep track of the changes and

make sure that the altered system is legal. He may check this by

issuing the END statement and transferring into the SIMULATE mode.

This will initiate the TEST phase and he can then transfer back to ALTER.

A summary of the basic version of SOSS is given below. A()

represents one or more blanks. Each statement is terminated by a

carriage-return. Parameters in brackets are optional.



26

SOSS (basic system)

I. Command Mode: (prefix: >)

Commands available:

CRE(ATE) to transfer into CREATE mode

ALT(ER) to transfer into ALTER mode

SIM(ULATE) to transfer into SIMULATE mode

HEL(P) to list available commands

MTS to return to MTS control, SOSS may be
$RESTART-ed

STO(P) to stop SOSS. Control returns to MTS and
the current system is destroyed.

II. Create mode: (prefix: ?)

Commands available:

"AS" specifications, e. g., Al @2

"connection" specifications, e. g., Al > B1

"function" specifications, e. g., Al = 0, 1, 1, 0

DIS(PLAY) A ALL A node -list

DIS(PLAY) A [VAL] [,AS] [,FUN] [,INP] [,OUT] A node -list
The nodes in the node-list must be separated by .commas.

DIS(PLAY) A SIZE to display size of current system

END terminates the CREATE mode. Returns the user to the
COMMAND mode.



27

III. Simulate mode: (prefix: * for commands, = for input)

Commands available:

STA(TE) A list of values for all the machine nodes
to define the initial state of the system.
Defaults to the "next-state" of the last simu-
lation or to zero when first transferring into
SIMULATE mode.

STE(P) A n to simulate n consecutive clock cycles.

CON(TINUE) A n to simulate starting from the currect clock
period until clock period n. SOSS returns
to the user for a new input set after each
step.

DIS(PLAY) same as in CREATE mode.

END terminates SIMULATE mode. Returns the
user to the COMMAND mode.

IV. ALTER mode.

Same as CREATE mode with the exception that it does not initialize
a new system.

Hitting the ATTENTION or BREAK key terminates the current

operation and returns the user to the current mode.



28

3. Future Features to be Incorporated in SOSS.

The current implementation of SOSS is a basic one in the follow-

ing sense:

i) the display system is very convenient for creating a system

but is awkward for displaying the results of simulations,

ii) an ability to store a permanent copy of the simulated system in

an MTS file is desired,

iii) more versatile function specification capabilities are desired,

iv) an ability to store input specifications for consecutive clock

period simulations is required.

These and additional features are listed below. They are part of the

design of SOSS and should be implemented in the future.

3. 1. COMMAND Mode.

3. 1. 1. Line-Continuation character.

The logical record length in MTS is 256 characters. This limits

the length of the function tables that can be specified. Since the values

in the specifications are separated by commas, the maximum function

table for AS < 10 (0-9) is 128. A line continuation character (+) will

eliminate this problem.

3. 1.2, TERSE.

To shorten the messages issued by SOSS for the well versed user.

This will decrease the terminal time costs.



29

3.2. CREATE Mode.

3.2.1. DELETE A node-list

Currently, the outputs of a specified node can be disconnected,

but the node cannot be deleted. In order to disconnect a node, the user

must redefine the input connections to all the nodes which were fed by

this particular node, eliminating this node as an input to some other

node but not from the node list. The DELETE command will enable

the user to delete nodes from the system.

3.2.2, TEST

To enable the user to test his created system for unspecified con-

nections and undefined functions. This is currently done, automatically,

only when the user transfers into the SIMULATE mode.

3. 2. 3. Additional function specification capabilities are proposed.

3. 2. 3. 1. Additions to the system predefined functions include:

i) NAND - logic iND.

ii) NOR - logic -RT.

iii) CONSTANT - a node with a single output value.

iv) CLOCK - to provide a clock for the user's system.

v) COUNTER (modulo n) - to provide an internal COUNTER node.

vi) RANDOM (modulo n) - to generate a random integer in the
range 0-n.

vii) MAX - to determine the maximal number in a given set.



30

viii) MIN - to determine the minimal number in a given set.

ix) SUM (modulo n) - to determine the sum (mod n) of a given
set of inputs.

x) PRODUCT (modulo n) - to determine the product (mod n) of a
given set of inputs.



31

4. An Example

In this section an example of an autonomous machine is given.

The transition graph of this machine is given in Figure 4. a. * This

machine generates all binary sequences of length two. It is an example

of a machine that tolerates all errors of length 1. An implementation

of it is given in Figure 4. b. The printout of the simulation is given.

First the system is created and displayed, then its behavior is simu-

lated. At each state, a clock period (or more) is simulated and the

resulting "next state" displayed.

J. F. Meyer, "Sequential behavior and its inherent tolerance to mem-
ory faults," Proc. of the 5th Hawaii International Conference on Sys-
tem Sciences, Jan. 1972, pp. 476-478.



32

000 011 101 110

1/0

1/1 1/0 1/1 / 1/0 1/1 1/
1/10V

111 001 100 010

Figure 4. a.

Figure 4. b.

A!

A3 .2 D2

A4

------- 03 D

7A6

7 0

Figure 4. b.



33

,CRE
?A l...A7, 01...04,QI...Q302
'701 ...04:0,l 1 , l , , , , , ,1 , ,1 , |,1 l
Q 1 ... 3:DELAY

?A 1=0,0,,0,0, I,0,0
?A2:=O,O, 1,0,0,0,0
?A3:=O,O,O,O,O,0,1 ,0
7A4:O,O,00O,O,O,O,l
1AS:O,0,0, 1,0,0,0,?A6:=0o0,0,0,1 ,0,0,0

A7:=0,1,0,00.0,0,0
QI ...Q 3>A I ...A7
7AI ,A2,A4,A 01
7A2...A4,A 7>02
7A4 ...A 703
?A2 ,A4,A ,A 70Q4

702Q2
?I 33- 3?

"DISPLAY INPUTS Al.*..A?,O1...04,0I...03
NODE INPUTS
Al :QI,Q2,Q3
A2 I=:Ql,Q2,Q3
AS I:QI,02,Q3
A4 I:QIQ2,Q3
A5 I=:QI,Q2,Q3
AS I:QI ,Q2,Q3
A7 I= l,Q2,Q3
6 1 I:AlA2,A4,AG
02 1 :A2,A3,A4,A7
03 I:A4,AS ,A6,A7
04 I:A2,A4,AGA7
01 I!OI
Q2 I:02
03 1:03
?DIS OUT Al...A7T,01...04,I...Q3
NODE OUTPUTS
Al 0:01
A2 9=0:01,02,04
A 3 0:02
A4 0:01,02,03,04
A5 0:03
AS 0:0 1,03,04
A7 0:02,03,04O I O:G I
012 O:Q2 NOT REPRODUCIBLE

03 O:Q3
04 *:NONE



34

Sc2 A2A*4A,6A
Q3 O:AI,A2,A3,A4,A,A6,A

7
701S SIZE ,A2,A3,A4,AS6,A
SIZE IS 2 P@GES.
?END

,i1M
0 INPUT NODES.
3 MACHINE NODES.

11 LOGIC NODES.
40IS VAL 01...03

NODE VAL
QI 0
Q2 0
Q3 0
4TE I
41DS VAL Ol...3

NODE VAL
1QI 0

Q2 0
Q3 0
4STE 100
*CIS VAL Q1...03
NODE VAL
gI 0
02 0
93 0
4STA 1,1,1 COMMENTi SET INITIAL STATE TO III
DIS VAL Qo1...Q03
NODE VAL
QI I
92 I
03 1
*TE 1
DIS VAL 01...3
NODE VAL
1Q 1
02 1
03 I
4STE 100
DIS VAL QI...Q3

WODE VAL NOT REPRODUCIBLE
QI 1
02 1
03 1

SSTA 0,1,1
*DIS VAL Q0I...93

NODE VAL
Qf 0
02 1
03 I



35

4STE I COMMENTs SHOULD TRANSFER TO STATE 001
*DIS VAL QI...Q3
NODE VAL
Qi 0
Q2 0
Q3 I
4TE I COMMENTt SHOULD TRANSFER BACK TO STATE 011*DIS VAL Q1...3

NODE VAL
GI 0
Q2 1
Q3 I
*STA 1,0,1
4STE I COMMENTt SIMILARLI TRANSFER BETVEEN STATES 101 AND 100*DIS VAL 0I.03

NODE VAL
QI I
Q2 0
Q3 0
4STE I
*DIS VAL Q1...Q3
NODE VAL
Ql I@1 1
Q2 0
Q3 I
OSTE I
*DIS VAL Qi...03
NODE VAL
QI I
Q2 0
Q3 0

4TA 1,1,0
*DIS VAL QI...Q3

NODE VAL
QI I
Q2 I
Q3 0
46TE I
*DIS VAL QI...Q03
NODE VAL
Ql 0
Q2 I
Q3 0

4STE I
*DIS VAL QI...Q3
NODE VAL
QI I
Q2 I
Q 3 0 - -1

*STE 1 NOT REPRODUCIBLE
*DIS VAL 01Q...93
NODE VAL
QI 0
Q2 I
Q3 0

*END



36

5. SOSS as a Computer Program.

The purpose of this section is to let the reader gain some insight

into the structure of SOSS as a program.

5. 1. How SOSS is Stored.

SOSS uses a data base for the created user system. This data

base occupies contiguous core locations. All the pointers in the data

structure are relative addresses, relating to the beginning of the storage

block allocated, so that the data base may be relocated in core. This

enables SOSS to allocate more storage area for the user as the need

arises. Initially the created system is assigned two MTS pages (a

page is 1024 32 bit words divided into 4 bytes each). If more space

is required, SOSS requests four pages from MTS, copies the informa-

tion into the first two pages of the new block and frees the current

block. This process is repeated each time the user runs out of space,

and each time the block assigned to the data base is doubled. The total

number of pages available for users on MTS is 256. The whole process

is transparent to the user and is done automatically. The created

system is stored in tables. The structure of the data base elements

is given below.



STRUCTURE OF DATA-BASE ELEMENTS

INPUT node MACHINE node LOGIC node

NAME-POINTER NAME-POINTER NAME-POINTER
NAME AS IVALUE l  NAME AS VALUE NAME AS VALUE

TO-POINTER TO-POINTER TO-POINTER
-------- 32 bits----. FROM-POINTER FROM-POINTER

FUNCTION-POINTER FUNCTION-POINTER
32 bits----+I FWD-STIM-POINTER

BWD-S IM-POINTER
......... 32 bits--

'FROM' table 'TO' list FUNCTION table
#REFERS ENTRIES --- TO-POINTER NXT-FUN-PNTR

FROM-NODE TO-NODE FUNCTIONNAME
FROM-NODE "32 bits TYPE #REFERS

'#ENT 1st 2nd
*dVALUE VALUE

3rd
FROM-NODE VALUE ..... .

Ie -- 32 bits 1 "

-< 32 bits ----- +

Figure 5.



38

An explanation of the terms used follows.

5. 1. 1. Node Elements

NAME POINTER points towards the next node

with the same name (i. e.,

the alphabetic character in the

node name, e.g., the A in A28).

NAME encoded node name and number

AS the alphabet size

VALUE the value assumed during the last

clock period simulation of the

function the node represents.

TO-POINTER points to a list of nodes for which

a particular node serves as an

input.

FROM-POINTER points to a list of nodes serving

as inputs to a particular node.

FUNCTION-POINTER points to the function table of a

node.

FWD-SIM-POINTER these pointers link all the com-

BWD-SIM-POINTER binational network nodes on a

two way list. This list serves to

detect illegal feedback loops. In the

the process of checking for feed-

back loops the nodes on the list are

automatically ordered for simulation.



39

5.1.2. 'FROM' table

Such a table is associated with each node, except for the system

input nodes. These tables are of variable length. Each table contains

pointers to the nodes which serve as inputs to the node associated with

a particular table. This is useful in the ALTER mode where a node has to

be disconnected or some connection deleted. The table also contains:

#REFERS the number of nodes which share the same

table. Several nodes can share the same table

if, while in the CREATE mode, a statement of

the form D2, A1, B5,Q2 > C1, C5, B1 is issued.

C1, C5, and B1 will have the same 'FROM'

table, with entries pointing towards D2, A1,

B5, and Q2.

#ENTRIES the number of nodes which serve as input

to the node associated with a particular

'FROM' table. In the above example, the

number of entries will be four. The maximum

number of entries is 256.

FROM-NODE each word contains a pointer to the nodes which

serve as inputs to the node associated with that

particular table.

5. 1. 3. 'TO' list

Such a list is associated with each node. It contains pointers to

the nodes for which the node, associated with a particular table, serves



40

as an input. The lists are of variable length. There is no limit on

the fan out of any node. Each element in the list contains:

TO-POINTER link information to the next entry in the list.

TO-NODE pointer to a node for which the node, associa-

ted with a particular list, serves as an input.

5.1.4. FUNCTION table

Each function table contains the "value" column of a given

function. A function table of a system function can be shared by more

than a single node, saving data base space. In order to define his own

common 'value' functions the user must, currently, specify such a func-

tion in the CREATE mode as a statement of the form

Al... A7, C2, B3 = 0, 1, 15, 255, 10, 2, 3, 4.

Al through A7, B3, and C2 will then share the same function

table. The entries in a function table are:

NXT-FUN-PNTR a pointer to the next function. This

entry is present only for named

functions (functions not specified by

a list of values). All the named

functions are linked on a list.

FUNCTION-NAME the name given to a named function.

This entry is present for functions not

specified by a list of values. A name

can be made of up to 11 alphanumeric

characters.



41

TYPE type of function (named or list of values)

#REFERS contains the number of nodes sharing a

particular function table. This is

necessary in the case where the value of

a function, represented by a node

associated with a particular table,

is to be altered.

#ENT number of entries in the table.

VALUE one entry in the function table. The

values consist of integers in the range

0-254. The integer 255 is reserved

to indicate an unspecified value in an

incompletely specified table.

5.2. How SOSS Operates.

This section presents an overview of the data processing and

handling done by SOSS at the data base level. It is not, however, in-

tended to be a detailed description of the processing and error

checking done during execution.

5. 2. 1. Data Base Initialization

Data base initialization is performed upon entry into the CREATE

mode. SOSS releases the memory associated with the last user system,

if such exists. It then allocates space (2 pages) for the new system.

Next, it proceeds to initialize and restore all the required constants

and pointers in the data base.



42

5. 2. 2. Creation of a Node

The user creates a node by defining the alphabet size (AS)

associated with it, e. g.,

B12@2.

SOSS first scans the data base to check whether such a node

has been previously defined. If such a node already exists, the new

AS value replaces the current AS and a message is issued, informing

the user that the AS has been redefined.

If the node has not been previously defined, the appropriate node

table (see Figure 5) is generated; the name of the node and its AS

are inserted into the table and the pointers are initialized to zero.

A node pointer that contains a zero signifies that this pointer has not,

as yet, been defined.

Next, the node table is linked to the list of nodes having the same

name (i. e., the same first alphabetic character, e.g., all the nodes

starting with an A are on one list). The name lists are ordered

lexicographically.

Finally, if the node is a logic node, i. e., part of the combinational

network, it is linked to a two-way list which contains all the logic

node s.

5. 2. 3. Assignment of a Function to a Node

Assigning a function to a node is achieved by the "=1" command.

E.g.,

B12= AND; C5= 0 ,1,1,3,5,2



43

If such a node does not exist SOSS informs the user of the fact, and

no assignment is made. If the function is defined using a name, (e.g.,

AND) rather than a list of values, SOSS sets the function pointer of

the node to the requested function. If the specified name is not found

a message is printed out.

If a function is defined by a list of values, SOSS allocates space

for the function table and inserts the values into the table in the order

in which they were specified. It then sets the pointer in the node to

the function table. If the node had a previously defined function as-

sociated with it, the user is informed that the function has been re-

defined.

5. 2. 4. Assignment of Input Connections to a Node

Specifying an input connection to a node is achieved by the ">"

command. For example,

A3, B2, B5 > B6, Q1

establishes A3, B2, and B5 as the inputs to both B6 and Q1.

SOSS verifies that all the nodes exist and that no more than 255

inputs are assigned to a node. In the case such failures are detected

a warning is issued and no assignment is made.

Next, a common 'FROM' table is generated for all the nodes

specified on the right hand side of the statement. The table contains

pointers to all the nodes serving as inputs to the nodes on the right,

i.e., the nodes specified on the left hand side of the statement.



44

If the connections to some node have been previously defined, a

message is printed out; the connections are disconnected by deleting

the pointer to the old 'FROM' table; also, the nodes on the right

hand side are deleted from the 'TO' list associated with each node

in the old 'FROM table.

If the nodes on the right hand side are part of the combinational

network SOSS establishes that no feedback loops exist (see section

5. 3.). Next, the forward and backward simulation pointers, and the

pointer to the new 'FROM' table are established. Finally, the nodes

on the right hand side of the statement are linked to the 'TO' lists

of each node in the new 'FROM' table.

5.2.5. Simulation

Simulation is executed one clock period at a time. The following

steps are invoked for each clock period.

i) Whenever input nodes are defined, SOSS verifies that all

the inputs are present and do not exceed their defined AS. It

then inserts these values in the appropriate input nodes.

ii) Using the forward simulation list (established during

CREATE-ion) the values for each combinational network node

are calculated.

iii) The values of the outputs of the machine nodes are calculated.

iv) The clock is advanced.

The algorithms used to order the combinational network nodes for

simulation and to evaluate the node outputs are discussed in section 5. 3.



45

5. 3. The Algorithms Used in SOSS

5. 3. 1. The Feedback Loop Test

No feedback loops are allowed in the combinational network. The

following algorithm tests the created system for feedback loops and

simultaneously arranges the nodes of the combinational network

for fast processing during simulation. While in CREATE, each time a

connection between two nodes is specified it is immediately tested.

If an illegal feedback loop is detected no connection is made, and

an error message is printed out.

An illegal feedback loop is defined, for our purpose, as a closed

chain of connected nodes which contains only combinational network

nodes. The test involves scanning down a tree-like structure. A

path is terminated in one of three cases:

i) No connection eminates from some node in the path

which means that it has not been specified yet. This is a legal

path.

ii) A machine node is encountered. This is a legal path.

iii) A combinational network node which has been encountered

previously is encountered again. This is an illegal path.

The search terminates when all the possible paths have been

scanned and found valid or when a feedback loop has been found.

The process makes use of a two way list which contains all the logic nodes

that have already been connected. The node which inputs have just been

specified is put at the endof the two way list. The test is executed

as follows:



46

1) set a "ring-pointer" indicating the node whose inputs have

just been specified.

2) Get the first entry in the 'TO' list associated with the node

indicated by the ring-pointer.

3) Do one of the following:

a) If the 'TO' list is empty go to 6.

b) If the entry is a machine node get the next entry in the

'TO' list.

c) If the entry is a logic node verify that it is not listed in

the 'FROM' table of the node which inputs have just been

specified. If it is listed in it, a feedback loop exists, so

go to 5. Otherwise, move the node referenced in the 'TO'

table to the end of the two-way list bM combinational network

nodes. Get the next entry in the 'TO' list. Go to 3.

d) If the 'TO' list associated with the node referenced by the

ring-pointer has been exhausted, go to 4.

4) If the ring-pointer points at the last node in the combinational

network nodes list then go to 6. Otherwise, advance the ring-pointer

to the next node on the list and go to 2.

5) A feedback loop has been detected. Print out error message.

Go to 6.

6) Test terminated. SOSS prompts the user for the next

CREATE (or ALTER) command.



47

This test algorithm simultaneously arranges the logic nodes for

simulation. The nodes are evaluated one at a time according to the

two way list. The algorithm assures that when a node output is to

be evaluated, all the nodes serving as inputs to that particular node

have already been evaluated.

5. 3. 2. Evaluating the Output of a Node

The output of a node is evaluated by using the function table

associated with that node. Given a node the process of output

evaluation is executed as follows:

1) the alphabet size (AS) and current value of each node

referenced in the 'FROM' table of the given node is picked up.

2) An index into the function table of the given node is calculated

using the formula

Index = V1 (AS 2 x... xASN) +. . +Vi(ASi+1 x... xASN) +

VN- I(ASN) + VN

where:

Vk is the current value of the k-th node in the 'FROM' table

ASK is the alphabet size of the k-th node in the 'FROM' table.

N is the number of entries in the 'FROM' table.

3) If the calculated index falls outside the function table an error

message is issued. If the index is legal, the function value associated

with it is picked.

4) If the function value obtained is within the AS specified for the

function it is inserted in the table of the node. Otherwise an error

message is issued.



48

While in simulation, all the calculated function values for the

machine nodes are stored temporarily. Only when all the values have

been obtained and no errors detected are these values inserted into

the appropriate node tables.

5) The clock is advanced.

5.4. Comments on Statistics and Efficiency.

Statistics ran on SOSS while in execution show that for small

systems, most of the processor time is spent on input/output opera-

tions. The time spent on simulation becomes larger, as expected,

when the simulated system grows. However, for a large system

the overhead becomes insignificant and the processor time spent

on simulation is almost a linear function of the system size.

Because of the test algorithm described above, the efficiency

of SOSS in the CREATE mode increases if the simulated system is

specified according to the signal flow through it. Less time is spent

then on testing for feedback loops.

6. Conclusion

SOSS has been designed to accommodate the need for a versatile

simulation system with a powerful command language that is not limited

to binary systems. Currently only the basic SOSS has been imple-

mented, but the provisions have been made for easy completion of

all the options. In addition, the need for an associate program that will

handle comparison of output data for large systems is foreseen. Such

a program, home ver should not be part of SOSS.


